\(\int \frac {\cos ^4(c+d x) \sin (c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx\) [1178]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 29, antiderivative size = 261 \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx=-\frac {8 a \left (32 a^2-29 b^2\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{35 b^5 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {8 \left (32 a^4-37 a^2 b^2+5 b^4\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{35 b^5 d \sqrt {a+b \sin (c+d x)}}+\frac {2 \cos ^3(c+d x) (8 a+b \sin (c+d x))}{7 b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {4 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (32 a^2-5 b^2-24 a b \sin (c+d x)\right )}{35 b^4 d} \]

[Out]

2/7*cos(d*x+c)^3*(8*a+b*sin(d*x+c))/b^2/d/(a+b*sin(d*x+c))^(1/2)-4/35*cos(d*x+c)*(32*a^2-5*b^2-24*a*b*sin(d*x+
c))*(a+b*sin(d*x+c))^(1/2)/b^4/d+8/35*a*(32*a^2-29*b^2)*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1
/2*d*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2))*(a+b*sin(d*x+c))^(1/2)/b^5/d/((a+b*sin(d*
x+c))/(a+b))^(1/2)-8/35*(32*a^4-37*a^2*b^2+5*b^4)*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x
)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))^(1/2))*((a+b*sin(d*x+c))/(a+b))^(1/2)/b^5/d/(a+b*sin(d
*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 261, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.241, Rules used = {2942, 2944, 2831, 2742, 2740, 2734, 2732} \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx=-\frac {8 a \left (32 a^2-29 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{35 b^5 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {4 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (32 a^2-24 a b \sin (c+d x)-5 b^2\right )}{35 b^4 d}+\frac {8 \left (32 a^4-37 a^2 b^2+5 b^4\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right ),\frac {2 b}{a+b}\right )}{35 b^5 d \sqrt {a+b \sin (c+d x)}}+\frac {2 \cos ^3(c+d x) (8 a+b \sin (c+d x))}{7 b^2 d \sqrt {a+b \sin (c+d x)}} \]

[In]

Int[(Cos[c + d*x]^4*Sin[c + d*x])/(a + b*Sin[c + d*x])^(3/2),x]

[Out]

(-8*a*(32*a^2 - 29*b^2)*EllipticE[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[a + b*Sin[c + d*x]])/(35*b^5*d*Sqrt[
(a + b*Sin[c + d*x])/(a + b)]) + (8*(32*a^4 - 37*a^2*b^2 + 5*b^4)*EllipticF[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]
*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/(35*b^5*d*Sqrt[a + b*Sin[c + d*x]]) + (2*Cos[c + d*x]^3*(8*a + b*Sin[c +
d*x]))/(7*b^2*d*Sqrt[a + b*Sin[c + d*x]]) - (4*Cos[c + d*x]*Sqrt[a + b*Sin[c + d*x]]*(32*a^2 - 5*b^2 - 24*a*b*
Sin[c + d*x]))/(35*b^4*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2831

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2942

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*((b*c*(m + p + 1) -
a*d*p + b*d*(m + 1)*Sin[e + f*x])/(b^2*f*(m + 1)*(m + p + 1))), x] + Dist[g^2*((p - 1)/(b^2*(m + 1)*(m + p + 1
))), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Simp[b*d*(m + 1) + (b*c*(m + p + 1) - a*d*p)*Si
n[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && N
eQ[m + p + 1, 0] && IntegerQ[2*m]

Rule 2944

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*((b*c*(m + p + 1) -
 a*d*p + b*d*(m + p)*Sin[e + f*x])/(b^2*f*(m + p)*(m + p + 1))), x] + Dist[g^2*((p - 1)/(b^2*(m + p)*(m + p +
1))), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*Simp[b*(a*d*m + b*c*(m + p + 1)) + (a*b*c*(m + p + 1
) - d*(a^2*p - b^2*(m + p)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2,
0] && GtQ[p, 1] && NeQ[m + p, 0] && NeQ[m + p + 1, 0] && IntegerQ[2*m]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \cos ^3(c+d x) (8 a+b \sin (c+d x))}{7 b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {12 \int \frac {\cos ^2(c+d x) \left (-\frac {b}{2}-4 a \sin (c+d x)\right )}{\sqrt {a+b \sin (c+d x)}} \, dx}{7 b^2} \\ & = \frac {2 \cos ^3(c+d x) (8 a+b \sin (c+d x))}{7 b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {4 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (32 a^2-5 b^2-24 a b \sin (c+d x)\right )}{35 b^4 d}-\frac {16 \int \frac {\frac {1}{4} b \left (8 a^2-5 b^2\right )+\frac {1}{4} a \left (32 a^2-29 b^2\right ) \sin (c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx}{35 b^4} \\ & = \frac {2 \cos ^3(c+d x) (8 a+b \sin (c+d x))}{7 b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {4 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (32 a^2-5 b^2-24 a b \sin (c+d x)\right )}{35 b^4 d}-\frac {\left (4 a \left (32 a^2-29 b^2\right )\right ) \int \sqrt {a+b \sin (c+d x)} \, dx}{35 b^5}+\frac {\left (4 \left (32 a^4-37 a^2 b^2+5 b^4\right )\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}} \, dx}{35 b^5} \\ & = \frac {2 \cos ^3(c+d x) (8 a+b \sin (c+d x))}{7 b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {4 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (32 a^2-5 b^2-24 a b \sin (c+d x)\right )}{35 b^4 d}-\frac {\left (4 a \left (32 a^2-29 b^2\right ) \sqrt {a+b \sin (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}} \, dx}{35 b^5 \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {\left (4 \left (32 a^4-37 a^2 b^2+5 b^4\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}} \, dx}{35 b^5 \sqrt {a+b \sin (c+d x)}} \\ & = -\frac {8 a \left (32 a^2-29 b^2\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{35 b^5 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {8 \left (32 a^4-37 a^2 b^2+5 b^4\right ) \operatorname {EllipticF}\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right ),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{35 b^5 d \sqrt {a+b \sin (c+d x)}}+\frac {2 \cos ^3(c+d x) (8 a+b \sin (c+d x))}{7 b^2 d \sqrt {a+b \sin (c+d x)}}-\frac {4 \cos (c+d x) \sqrt {a+b \sin (c+d x)} \left (32 a^2-5 b^2-24 a b \sin (c+d x)\right )}{35 b^4 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.71 (sec) , antiderivative size = 222, normalized size of antiderivative = 0.85 \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx=\frac {16 a \left (32 a^3+32 a^2 b-29 a b^2-29 b^3\right ) E\left (\frac {1}{4} (-2 c+\pi -2 d x)|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}-16 \left (32 a^4-37 a^2 b^2+5 b^4\right ) \operatorname {EllipticF}\left (\frac {1}{4} (-2 c+\pi -2 d x),\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}+b \cos (c+d x) \left (-256 a^3+216 a b^2-16 a b^2 \cos (2 (c+d x))+\left (-64 a^2 b+45 b^3\right ) \sin (c+d x)+5 b^3 \sin (3 (c+d x))\right )}{70 b^5 d \sqrt {a+b \sin (c+d x)}} \]

[In]

Integrate[(Cos[c + d*x]^4*Sin[c + d*x])/(a + b*Sin[c + d*x])^(3/2),x]

[Out]

(16*a*(32*a^3 + 32*a^2*b - 29*a*b^2 - 29*b^3)*EllipticE[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[
c + d*x])/(a + b)] - 16*(32*a^4 - 37*a^2*b^2 + 5*b^4)*EllipticF[(-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a
+ b*Sin[c + d*x])/(a + b)] + b*Cos[c + d*x]*(-256*a^3 + 216*a*b^2 - 16*a*b^2*Cos[2*(c + d*x)] + (-64*a^2*b + 4
5*b^3)*Sin[c + d*x] + 5*b^3*Sin[3*(c + d*x)]))/(70*b^5*d*Sqrt[a + b*Sin[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(942\) vs. \(2(307)=614\).

Time = 1.76 (sec) , antiderivative size = 943, normalized size of antiderivative = 3.61

method result size
default \(-\frac {2 \left (-5 b^{5} \left (\sin ^{5}\left (d x +c \right )\right )+128 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, F\left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{4} b -96 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, F\left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{3} b^{2}-148 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, F\left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{2} b^{3}+96 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, F\left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a \,b^{4}+20 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, F\left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) b^{5}-128 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, E\left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{5}+244 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, E\left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a^{3} b^{2}-116 \sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}\, \sqrt {-\frac {\left (\sin \left (d x +c \right )-1\right ) b}{a +b}}\, \sqrt {-\frac {\left (1+\sin \left (d x +c \right )\right ) b}{a -b}}\, E\left (\sqrt {\frac {a +b \sin \left (d x +c \right )}{a -b}}, \sqrt {\frac {a -b}{a +b}}\right ) a \,b^{4}+8 a \,b^{4} \left (\sin ^{4}\left (d x +c \right )\right )-16 a^{2} b^{3} \left (\sin ^{3}\left (d x +c \right )\right )+20 b^{5} \left (\sin ^{3}\left (d x +c \right )\right )-64 a^{3} b^{2} \left (\sin ^{2}\left (d x +c \right )\right )+42 a \,b^{4} \left (\sin ^{2}\left (d x +c \right )\right )+16 a^{2} b^{3} \sin \left (d x +c \right )-15 b^{5} \sin \left (d x +c \right )+64 a^{3} b^{2}-50 a \,b^{4}\right )}{35 b^{6} \cos \left (d x +c \right ) \sqrt {a +b \sin \left (d x +c \right )}\, d}\) \(943\)

[In]

int(cos(d*x+c)^4*sin(d*x+c)/(a+b*sin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/35*(-5*b^5*sin(d*x+c)^5+128*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))
*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^4*b-96*((a+b*sin(d*x+c))/(a-b)
)^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/
2),((a-b)/(a+b))^(1/2))*a^3*b^2-148*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*
x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^2*b^3+96*((a+b*sin(d*x+c)
)/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-
b))^(1/2),((a-b)/(a+b))^(1/2))*a*b^4+20*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+si
n(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*b^5-128*((a+b*sin(d*x+c
))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticE(((a+b*sin(d*x+c))/(a
-b))^(1/2),((a-b)/(a+b))^(1/2))*a^5+244*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+si
n(d*x+c))*b/(a-b))^(1/2)*EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^3*b^2-116*((a+b*sin(d
*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticE(((a+b*sin(d*x+c)
)/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a*b^4+8*a*b^4*sin(d*x+c)^4-16*a^2*b^3*sin(d*x+c)^3+20*b^5*sin(d*x+c)^3-64*
a^3*b^2*sin(d*x+c)^2+42*a*b^4*sin(d*x+c)^2+16*a^2*b^3*sin(d*x+c)-15*b^5*sin(d*x+c)+64*a^3*b^2-50*a*b^4)/b^6/co
s(d*x+c)/(a+b*sin(d*x+c))^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.19 (sec) , antiderivative size = 659, normalized size of antiderivative = 2.52 \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx=\frac {2 \, {\left (2 \, {\left (\sqrt {2} {\left (64 \, a^{4} b - 82 \, a^{2} b^{3} + 15 \, b^{5}\right )} \sin \left (d x + c\right ) + \sqrt {2} {\left (64 \, a^{5} - 82 \, a^{3} b^{2} + 15 \, a b^{4}\right )}\right )} \sqrt {i \, b} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) - 2 i \, a}{3 \, b}\right ) + 2 \, {\left (\sqrt {2} {\left (64 \, a^{4} b - 82 \, a^{2} b^{3} + 15 \, b^{5}\right )} \sin \left (d x + c\right ) + \sqrt {2} {\left (64 \, a^{5} - 82 \, a^{3} b^{2} + 15 \, a b^{4}\right )}\right )} \sqrt {-i \, b} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 i \, a}{3 \, b}\right ) - 6 \, {\left (\sqrt {2} {\left (-32 i \, a^{3} b^{2} + 29 i \, a b^{4}\right )} \sin \left (d x + c\right ) + \sqrt {2} {\left (-32 i \, a^{4} b + 29 i \, a^{2} b^{3}\right )}\right )} \sqrt {i \, b} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 i \, a^{3} - 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) - 2 i \, a}{3 \, b}\right )\right ) - 6 \, {\left (\sqrt {2} {\left (32 i \, a^{3} b^{2} - 29 i \, a b^{4}\right )} \sin \left (d x + c\right ) + \sqrt {2} {\left (32 i \, a^{4} b - 29 i \, a^{2} b^{3}\right )}\right )} \sqrt {-i \, b} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (-8 i \, a^{3} + 9 i \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 i \, a}{3 \, b}\right )\right ) - 3 \, {\left (8 \, a b^{4} \cos \left (d x + c\right )^{3} + 2 \, {\left (32 \, a^{3} b^{2} - 29 \, a b^{4}\right )} \cos \left (d x + c\right ) - {\left (5 \, b^{5} \cos \left (d x + c\right )^{3} - 2 \, {\left (8 \, a^{2} b^{3} - 5 \, b^{5}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )\right )} \sqrt {b \sin \left (d x + c\right ) + a}\right )}}{105 \, {\left (b^{7} d \sin \left (d x + c\right ) + a b^{6} d\right )}} \]

[In]

integrate(cos(d*x+c)^4*sin(d*x+c)/(a+b*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

2/105*(2*(sqrt(2)*(64*a^4*b - 82*a^2*b^3 + 15*b^5)*sin(d*x + c) + sqrt(2)*(64*a^5 - 82*a^3*b^2 + 15*a*b^4))*sq
rt(I*b)*weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) -
 3*I*b*sin(d*x + c) - 2*I*a)/b) + 2*(sqrt(2)*(64*a^4*b - 82*a^2*b^3 + 15*b^5)*sin(d*x + c) + sqrt(2)*(64*a^5 -
 82*a^3*b^2 + 15*a*b^4))*sqrt(-I*b)*weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a*b^2)
/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*I*a)/b) - 6*(sqrt(2)*(-32*I*a^3*b^2 + 29*I*a*b^4)*sin(d*x
 + c) + sqrt(2)*(-32*I*a^4*b + 29*I*a^2*b^3))*sqrt(I*b)*weierstrassZeta(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a
^3 - 9*I*a*b^2)/b^3, weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*I*a^3 - 9*I*a*b^2)/b^3, 1/3*(3*b*c
os(d*x + c) - 3*I*b*sin(d*x + c) - 2*I*a)/b)) - 6*(sqrt(2)*(32*I*a^3*b^2 - 29*I*a*b^4)*sin(d*x + c) + sqrt(2)*
(32*I*a^4*b - 29*I*a^2*b^3))*sqrt(-I*b)*weierstrassZeta(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a*b^2)
/b^3, weierstrassPInverse(-4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(-8*I*a^3 + 9*I*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) +
3*I*b*sin(d*x + c) + 2*I*a)/b)) - 3*(8*a*b^4*cos(d*x + c)^3 + 2*(32*a^3*b^2 - 29*a*b^4)*cos(d*x + c) - (5*b^5*
cos(d*x + c)^3 - 2*(8*a^2*b^3 - 5*b^5)*cos(d*x + c))*sin(d*x + c))*sqrt(b*sin(d*x + c) + a))/(b^7*d*sin(d*x +
c) + a*b^6*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**4*sin(d*x+c)/(a+b*sin(d*x+c))**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{4} \sin \left (d x + c\right )}{{\left (b \sin \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)^4*sin(d*x+c)/(a+b*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^4*sin(d*x + c)/(b*sin(d*x + c) + a)^(3/2), x)

Giac [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)^4*sin(d*x+c)/(a+b*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x) \sin (c+d x)}{(a+b \sin (c+d x))^{3/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^4\,\sin \left (c+d\,x\right )}{{\left (a+b\,\sin \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int((cos(c + d*x)^4*sin(c + d*x))/(a + b*sin(c + d*x))^(3/2),x)

[Out]

int((cos(c + d*x)^4*sin(c + d*x))/(a + b*sin(c + d*x))^(3/2), x)